Connect with us

Featured

UM Engineer’s Research Charting New Waters in Fluid Studies

Published

on

By Edwin B. Smith

University of Mississippi

Wen Wu, an assistant professor of mechanical engineering at the University of Mississippi, is using computer simulations to help reduce drag in a variety of applications, from rockets and cars to medical technology. Movable shark scales are among the inspirations for his approach, which has attracted funding through a National Science Foundation EPSCoR grant. Photo by Thomas Graning/Ole Miss Digital Imaging Services

Sharks have a built-in drag-reducing system in the scales that line their bodies. A University of Mississippi mechanical engineer is trying to use that same approach to make airplanes go faster and use less fuel, help pipelines pump more oil with less effort and even help doctors treat chronic lung ailments.

Wen Wu, an assistant professor in the School of Engineering, is principal investigator for a project that involves observing and analyzing movable shark scales and then adapting findings to practical, real-world applications. Wu’s research has been awarded a two-year grant for $173,392 from the National Science Foundation’s Established Program to Stimulate Competitive Research Track-4.

EPSCoR is a national platform designed to fund the projects of investigators whose research advances education and technology, particularly in underrepresented regions.

“This research aims at a long-standing topic in the fluid community; that is reducing the drag,” Wu said. “We want to run/swim faster. We try to design aircrafts/ships/rockets that consume less fuel and travel as fast as possible. 

“We hope we can pump the crude oil through pipelines with minimal pump power to cut the shipping cost.”

For decades, scientists and engineers have tried various approaches to reduce the drag in fluid flow. One limitation of current methods is that each of them is designed to accommodate specific flows. When the actual function differs from that design, it may cause degradation – increased drag, for example – rather than drag reduction.

Shark scales have a unique feature that current techniques overlook, Wu said. The scales reduce drag by using different bristle angles in various flow conditions. These adjustments in bristle angle do not require any energy input from the shark.

“It seems to be flow-activated,” he said. “It is a promising feature that if we understand and utilize properly, can significantly improve the capability and robustness of drag reduction techniques.”

NSF EPSCoR Track-4 fellowships support junior faculty to develop expertise that need to help expand their future research areas. 

“In this collaboration, I will be hosted by Dr. Parviz Moin, the world-leading scientist in turbulence physics and modeling, at the Center for Turbulence Research at Stanford,” Wu said. “I will learn how to simulate the interaction between a moving-surface structures and the flow, and how to develop models to represent this interaction in engineering design process.”

Wu thinks the research may help industries in the state and region in the long term to develop new manufacturing opportunities. Possible products that could result from his work might include such things as adjustable low-drag surfaces for ships and aircraft, noise-reduction rotor blades or wind turbines, and biomedical technologies that help treat chronic obstructive pulmonary disease.

Wu also will work with engineers in forest-related industries to understand how the interaction between air flows and plant life affect sprinkler systems, wind erosion control and pesticide application. All these applications could make the forestry industry more profitable.

Wu’s latest research achievement is a continuation of a track record he began before joining the Ole Miss mechanical engineering faculty in February 2020.

“Dr. Wu’s professional achievements include a series of fruitful investigations on flow detachment from its adjacent surface,” said Arunachalam Rajendran, UM chair and professor of mechanical engineering.

“I think his work provides great insights from many perspectives to our current inadequate knowledge on turbulent flows. These flows are among the most critical factors that affect the performance of thermo-fluid devices and the hardest ones for numerical tools to predict accurately. 

“Dr. Wu’s research will develop better computer modeling tools that could improve future engineering design processes.”


Sports Editor

Ole Miss Men’s Basketball

Mon, Nov 4Long Island University Logovs Long Island University W, 90-60
Fri, Nov 8Grambling Logovs GramblingW, 66-64
Tue, Nov 12South Alabama Logovs South AlabamaW, 64-54
Sat, Nov 16Colorado State Logovs Colorado StateW, 84-69
Thu, Nov 21Oral Roberts Logovs Oral RobertsL, 100-68
Thu, Nov 28BYU Logovs BYUW, 96-85 OT
Fri, Nov 29Purdue Logovs 13 PurdueL, 80-78
Tue, Dec 3Louisville Logo@ LouisvilleW, 86-63
Sat, Dec 7Lindenwood Logovs LindenwoodW, 86-53
Sat, Dec 14Georgia Logovs Southern MissW, 77-46
Tue, Dec 17Southern Logovs SouthernW, 74-61
Sat, Dec 21Queens University Logovs Queens UniversityW, 80-62
Sat, Dec 28Memphis Logo@ MemphisL, 87-70
Sat, Jan 4Georgia Logovs GeorgiaW, 63-51
Wed, Jan 8Arkansas Logo@ 23 ArkansasW, 73-66
Sat, Jan 11LSU Logovs LSUW, 77-65
Tue, Jan 14Alabama Logo@ 5 AlabamaW, 74-64
Sat, Jan 18Mississippi State Logo@ 17 Mississippi StateL, 81-84
Wed, Jan 22Texas A&M State Logovs 13 Texas A&ML, 62-63
Sat, Jan 25Missouri Logo@ Missouri5:00 PM
SECN
Wed, Jan 29Texas Logovs Texas8:00 PM
ESPN2
Sat, Feb 1Auburn Logovs 2 Auburn3:00 PM
TBA
Tue, Feb 4Kentucky Logovs 10 Kentucky6:00 PM
ESPN
Sat, Feb 8LSU Logo@ LSU7:30 PM
SECN
Wed, Feb 12South Carolina Logo@ South Carolina6:00 PM
SECN
Sat, Feb 15Mississippi State Logovs 17 Mississippi State5:00 PM
TBA
Sat, Feb 22Auburn Logo@ Vanderbilt2:30 PM
SECN
Wed, Feb 26Auburn Logo@ 2 Auburn6:00 PM
TBA
Sat, Mar 1Oklahoma Logovs 12 Oklahoma1:00 PM
TBA
Wed, Mar 5Tennessee Logovs 1 Tennessee8:00 PM
TBA
Sat, Mar 8Florida Logo@ 6 Florida5:00 PM
SECN

@ COPYRIGHT 2024 BY HT MEDIA LLC. ALL RIGHTS RESERVED. HOTTYTODDY.COM IS AN INDEPENT DIGITAL ENTITY NOT AFFILIATED WITH THE UNIVERSITY OF MISSISSIPPI.